Elementary Statistics Geometric Probability Distribution

Geometric Probability

Distribution

What is a **Geometric Probability Distribution**?

It is a probability distribution for a discrete random variable x with probability P(x) such that

- The same criteria as binomial probability distribution exists except the number of trials n is not a fixed number.
- A trial is repeated until a success occurs on the x trial where x ≥ 1.
- The repeated trials are independent of each other.
- ► The probability of success p remains the same for each trial where 0 ≤ p ≤ 1.

•
$$0 \le P(x) \le 1$$
 and $\sum P(x) = 1$.

How to find the probability of a

Geometric Probability Distribution

The probability that the first success will occur on trial number x is

$$P(x) = p \cdot (q)^{x-1}$$
, where $q = 1 - p$
with $\mu = \frac{1}{p}$, $\sigma^2 = \frac{q}{p^2}$, and $\sigma = \sqrt{\sigma^2}$.

Example:

Consider a geometric probability distribution for a discrete random variable x with probability of success p = .2.

- ► Find q.
- Find P(x = 2).
- Find $P(x \leq 2)$.
- Find its mean μ.
- Find its variance σ^2 .
- Find its standard deviation σ.

Solution:

Find
$$q \Rightarrow q = 1 - p = 1 - 0.2 = 0.8$$
.

Find
$$P(x = 2) \Rightarrow P(x = 2) = 0.2 \cdot (0.8)^{2-1} = 0.16$$
.

Find $P(x \le 2) \Rightarrow P(x \le 2) = P(x = 2) + P(x = 1) = 0.16 + 0.2 = 0.36.$

Find its mean
$$\mu \Rightarrow \mu = \frac{1}{p} = \frac{1}{.2} = 5.$$

Find its variance
$$\sigma^2 \Rightarrow \sigma^2 = \frac{q}{p^2} = \frac{.8}{.2^2} = 20.$$

• Find its standard deviation $\sigma \Rightarrow \sigma = \sqrt{\sigma^2} = \sqrt{20} \approx 4.5$.

Geometric Probability Distributions & TI

When you have	Use TI command
P(x = a)	geometpdf(<i>p</i> , <i>a</i>)
$P(x \leq a)$	geometcdf(<i>p</i> , <i>a</i>)
$P(x \ge a)$	$1-{\sf geometcdf}(p,a-1)$
$P(a \le x \le b)$	geometcdf(p,b) - geometcdf(p,a-1)

You can find TI commands **geometpdf** and **geometcdf** by pressing (2ND), (VARS), then (\downarrow) to locate them.

Elementary Statistics Geometric Probability Distribution

Example:

Certain basketball player in NBA makes 70% of his free throws. What is the probability that

- he misses his first two free throws and makes the third one.
- he makes his first or second free throws.
- he makes his first free throw after the fourth attempt.

Solution:

This problem fits all criteria of a geometric probability distribution with p = 0.7 and q = 0.3.

Let x be the number of free throws when the first success occurs.

Elementary Statistics Geometric Probability Distribution

Solution Continued:

Now we need to find the probability that

▶ he misses his first two free throws and makes the third one $\Rightarrow P(x = 3) = \text{geometpdf}(.7, 3) = 0.063.$

▶ he makes his first or second free throws $\Rightarrow P(x \le 2) = \text{geometcdf}(.7, 2) = 0.91.$

▶ he makes his first free throw after the fourth attempt $\Rightarrow P(x > 4) = P(x \ge 5) = 1 - P(x \le 4)$ $\Rightarrow 1 - \text{geometcdf}(.7, 4) = 0.0081.$

It is important to emphasize that we cannot do the last part by computing $P(x \le 4)$ by switching p and q, so using p = .3 we will not get the correct answer.

 $\Rightarrow P(x \le 4) =$ **geometcdf** $(.3, 4) \ne 0.0081$.